Short Notes

JAPAN. J. APPL. PHYS. Vol. 17 (1978), No. 2

Effect of Hydrostatic Pressure on the Ferroelectric Phase Transitions in CsH₂PO₄ and CsD₂PO₄

Kazuo GESI and Kunio OzAWA Japan Atomic Energy Research Institute, Tokai, Ibaraki 319–11 (Received November 2, 1977)

Ferroelectric activity in CsH₂PO₄ and CsD_2PO_4 was first reported by Levstik *et al.*¹⁾ They reported a large isotope effect on the ferroelectric Curie point; the Curie point of $C_{s}H_{2}PO_{4}, T_{c}^{H} = -119.5 \,^{\circ}C$ is increased to $T_{c}^{D} =$ -5.55°C by deuteration. Recent X-ray diffraction study by Uesu and Kobayashi²⁾ showed that the crystal structure of CsH₂PO₄ at room temperature belongs to the monoclinic system (space group: $P2_1/m$) unlike to other KH₂PO₄type ferroelectrics in which the paraelectric phases belong to the tetragonal system. The lattice parameters at room temperature are a =7.90065 Å, b = 6.36890 Å, c = 4.87254 Å and $\beta = 107.742^{\circ}$.²⁾ (The crystal structure can be described as a pseudo-orthorhombic system a' = 15.801 Å, b' = 6.36890 Å, c' = 4.8725 Å and $\beta' = 89.78^{\circ}$ by taking a' = 2a + c, b' = b and c' = bc.) The spontaneous polarization is parallel to the b-axis. Slightly different mechanism of the ferroelectric transition has been suggested for $C_{s}H_{2}PO_{4}$ from that for $KH_{2}PO_{4}$.^{2,3)}

In the present note we report the effect of hydrostatic pressure on the ferroelectric phase transitions in CsH₂PO₄ and CsD₂PO₄. This work aimed to see whether CsH₂PO₄ shows a different pressure effect from other KH₂PO₄type ferroelectrics. The compound CsH₂PO₄ was synthesized by the reaction, $Cs_2CO_3 +$ $2H_3PO_4 = 2C_8H_2PO_4 + H_2O + CO_2$. Single crystals were grown by slow evaporation of an aqueous solution. The deuterated analogue $C_{s}D_{2}PO_{4}$ was synthesized by the similar way; $Cs_2CO_3 + 2D_3PO_4 = 2CsD_2PO_4 + D_2O +$ CO₂. Deuterated phospheric acid (deuteration rate 99%) was obtained from E. Merk Co. Ltd. The Curie point of thus grown deuterated compound was about -11 °C. It was slightly raised to -8.5°C after two successive recrystallizations from 99.7%-D2O solution. Further recrystallizations from D₂O solution did not seem to increase the Curie point drastically. The

Curie point of the deuterated specimen used in the present work was slightly lower than that reported by Levstik *et al.*¹⁾ but almost equal to that reported by Semmingen *et al.*³⁾

Several *b*-plate specimens were cut from the single crystals and gold foil was attached on the surfaces as electrodes. A Cu-Be bomb was served for the high pressure measurements. The pressure-transmitting fluid used was 1:1 mixture of *n*- and *iso*-penthane. The capacitance was measured with an LCR-meter and recorded on an x-y recorder as a function of temperature at various pressures. At the Curie point pronounced peak in the capacitance was observed both for CsH_2PO_4 and for CsD_2PO_4 .

In Fig. 1 the observed pressure-temperature phase diagrams of CsH_2PO_4 and CsD_2PO_4 are indicated. In CsH_2PO_4 , the Curie point decreases with increasing pressure. The pressure range studied in the present work was limited because of the solidification of the pressure-transmitting fluid used. The pressure dependence of the Curie point T_c^H can be approximated by a linear relation of $T_c^H = T_c^H(0) + K^H p$ with the parameters of $T_c^H(0) = -119.8 \pm 0.3$ °C and $K^H = -5.6 \pm 0.3$ deg kbar⁻¹.

In CsD_2PO_4 , the Curie point also decreases with increasing pressure. Up to about 6 kbar, a linear relation $T_c^D = T_c^D(0) + K^D p$ holds with the

Fig. 1. Pressure-temperature phase diagrams of CsH₂PO₄ (insert) and CsD₂PO₄. The vertical bars indicate thermal hysteresis of the II–III transition.

parameters of $T_c^{\rm D}(0) = -8.5 \pm 0.2 \,^{\circ}{\rm C}$ and $K^{\rm D} =$ -8.5 ± 0.1 deg kbar⁻¹. Above about 6 kbar a λ -type maximum of the dielectric constant of CsD₂PO₄ is not observed, instead a step-like discontinuity is seen. The transition point vs. pressure relation lies on another straight line than the $T_c^{\rm D}$ vs. p above 6 kbar. This indicates that there is a pressure-induced phase above 6 kbar, and the phase is called Phase III in this note. The pressure slope of the I-III transition point is $dT_c^{I-III}/dp = -2.5 \pm 0.2 \text{ deg kbar}^{-1}$. The transition from Phase II (the ferroelectric phase) to Phase III is characterized by a discontinuous jump in the dielectric constant and marked thermal hysteresis of 15-17°C as shown in Fig. 1. The I-II-III triple point exists at $p_{tr} = 6.04 \pm 0.2$ kbar and $T_{tr} = -59.8 \pm 0.3$ °C. The estimation of the pressure coefficient of the II-III transition point in equilibrium is difficult because of the large thermal hysteresis, but very roughly it is $\sim 33 \text{ deg kbar}^{-1}$. Ferroelectric activity of CsD₂PO₄ in Phase III has not been recognized so far.

The present results show that the effects of deuteration and of hydrostatic pressure on the Curie points of CsH₂PO₄ are quite similar to those in KH₂PO₄: That is, the ratio of the Curie point of deuterated compound to that of normal compound $T_c^{\rm p}(0)/T_e^{\rm H}(0)$ is 1.74 for CsH₂PO₄ and 1.73 for KH₂PO₄.⁴⁾ The fractional pressure coefficient of the Curie point of the normal compound d(ln $T_c^{\rm H})/dp$ is -0.036 kbar⁻¹ for CsH₂PO₄ and -0.037 kbar⁻¹ for KH₂PO₄.⁴⁾ The similarity

suggests that the proton tunneling motion plays an important role in the ferroelectric process in CsH_2PO_4 as in the case of KH_2PO_4 .

The Curie constant *C* have been reported to be 4.3×10^4 K and 3.2×10^4 K for CsH₂PO₄ and CsD₂PO₄, respectively.¹⁾ Then, the volume electrostrictive coefficients Q_h are estimated to be 0.82×10^{-12} cgs esu for CsH₂PO₄ and 1.67×10^{-12} cgs esu for CsD₂PO₄ by using the relation $Q_h = (-2\pi/C) \cdot (dT_c/dp)_{p=0}$ together with the observed pressure coefficients of the Curie points. The electrostrictive coefficient of CsH₂PO₄ is comparable with $Q_h = Q_{12} + Q_{22} + Q_{32} = 0.6 \times 10^{-12}$ cgs esu obtained from thermal expansion measurements by X-ray diffraction.*

The authors would thank Drs. Y. Uesu and J. Kobayashi for kind showing their unpublished data.

References

- A. Levstik, R. Blinc, P. Kadaba, S. Čižikov, I. Levstik and C. Filipič: Solid State Commun. 16 (1975) 1339.
- Y. Uesu and J. Kobayashi: Phys. Status solidi (a) 34 (1976) 475.
- 3) D. Semmingen, W. D. Ellenson, B. C. Frazer and G. Shirane: Phys. Rev. Letters **38** (1977) 1299.
- H. Umebayashi, B. C. Frazer, G. Shirane and W. B. Daniels: Solid State Commun. 5 (1967) 591.
- *Y. Uesu, T. Santo and J. Kobayashi: private communication: The results were presented at the Meeting of the Physical Society of Japan held in Yamaguchi, 6 April, 1977.

Iradition: In \mathcal{L} still \mathcal{P}_2 and \mathcal{L} \mathcal{L}_1 , \mathcal{P}_2 . The work aused to see whether \mathcal{C} \mathcal{H}_1 , \mathcal{P}_2 , \mathcal{H} hows a different pressure effect from other \mathcal{K} \mathcal{H}_2 , \mathcal{P}_2 , \mathcal{H}_2 , $\mathcal{$

